CS616 30 cm Water Content Reflectometer
High Accuracy and Precision
Designed for long-term monitoring
weather applications supported water applications supported energy applications supported gas flux and turbulence applications supported infrastructure applications supported soil applications supported

Overview

The CS616 measures the volumetric water content (VWC) of porous media (such as soil) from 0% to saturation. The probe outputs a megahertz oscillation frequency, which is scaled down and easily read by a Campbell Scientific data logger.

Read More

Benefits and Features

  • Compatible with most Campbell Scientific data loggers
  • High accuracy and high precision
  • Fast response time
  • Designed for long-term unattended water content monitoring
  • Compatible with AM16/32-series multiplexers, allowing measurement of multiple sensors
  • Probe rods can be inserted from the surface or buried at any orientation to the surface.

Images

Detailed Description

The CS616 is comprised of two 30-cm-long stainless-steel rods connected to the measurement electronics. The circuit board is encapsulated in epoxy, and a shielded four-conductor cable is connected to the circuit board to supply power, enable the probe, and monitor the output.

The CS616 uses the time-domain measurement method to measure VWC; a reflectometer (cable tester) such as the TDR200 is not required. This method consists of the CS616 generating an electromagnetic pulse. The elapsed travel time and pulse reflection are then measured and used to calculate soil volumetric water content.

Response Characteristics

The signal propagating along the parallel rods of the CS616 is attenuated by free ions in the soil solution and conductive constituents of the soil mineral fraction. In most applications, the attenuation is not enough to affect the CS616 response to changing water content, and the response is well described by the standard calibration. However, in soil with relatively high soil electrical conductivity levels, compacted soils, or soils with high clay content, the calibration should be adjusted for the specific medium. Guidance for making these adjustments is provided in the instruction manual.


Specifications

Measurements Made Volumetric water content (VWC) of porous media (such as soil)
Measurement Range 0% to saturation
Water Content Accuracy ±2.5% VWC (using standard calibration with bulk EC of ≤ 0.5 dS m-1, bulk density of ≤ 1.55 g cm-3, and measurement range of 0% to 50% VWC)
Required Equipment Measurement system
Soil Suitability Long rods and lower frequency are well-suited for soft soil with low electrical conductivity (< 2 dS/m).
Rods Not replaceable
Sensors Not interchangeable
Operating Temperature Range 0° to +70°C
Probe-to-Probe Variability ±0.5% VWC in dry soil, ±1.5% VWC in typical saturated soil
Precision Better than 0.1% VWC
Resolution 0.1% VWC
Output ±0.7 V square wave (with frequency dependent on water content)
Current Drain
  • 65 mA @ 12 Vdc (when enabled)
  • 45 μA (quiescent typical)
Power Supply Voltage 5 Vdc minimum; 18 Vdc maximum
Enable Voltage 4 Vdc minimum; 18 Vdc maximum
Electromagnetic CE compliant (Meets EN61326 requirements for protection against electrostatic discharge.)
Rod Spacing 32 mm (1.3 in.)
Rod Diameter 3.2 mm (0.13 in.)
Rod Length 300 mm (11.8 in.)
Probe Head Dimensions 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.)
Cable Weight 35 g per m (0.38 oz per ft)
Weight 280 g (9.9 oz) without cable

Compatibility

Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.

Data Loggers

Compatible Note
CR1000 (retired)
CR1000X
CR300
CR3000 (retired)
CR310
CR350
CR6
CR800 (retired)
CR850 (retired)

Additional Compatibility Information

RF Considerations

The RF emissions are below FCC and EU limits as specified in EN61326 if the CS616 is enabled less than 0.6 ms, and measurements are made less frequently than once a second. External RF sources can also affect the CS616 operation. Consequently, the CS616 should be located away from significant sources of RF such as ac power lines and motors.

Installation Tool

The CS650G makes inserting soil-water sensors easier in dense or rocky soils. This tool can be hammered into the soil with force that might damage the sensor if the CS650G was not used. It makes pilot holes into which the rods of the sensors can then be inserted. It replaces both the 14383 and 14384.

Data Logger Considerations

The reflectometer connects directly to one of the data logger’s single-ended analog inputs. A data logger control port is typically used to enable the CS616 for the amount of time required to make the measurement. Data logger instructions convert the probe square-wave output to period which is converted to volumetric water content using a calibration.

FAQs for

Number of FAQs related to CS616: 36

Expand AllCollapse All

  1. The CS616 has a faster period output than the CS615-L, so it does not work with the 21X dataloggers.

  2. No. The output is too fast to be measured on the pulse channel of a 21X or CR7.

  3. As long as the period value in the saturated soil is less than 42 ms, “NAN” will not be displayed.  Conditions that can cause the period value to be too high include high electrical conductivity, high clay content, and high organic matter content. Under those conditions, it may be possible to get good results by using the PeriodAvg() or P27 instruction with a soil-specific calibration equation.

  4. No. Although the CS616/CS625 could be calibrated to convert its period reading to the dielectric permittivity of snow, there is not an easy way to relate the permittivity to liquid water content. This is because the density of snow changes over time and the amount of liquid water that can be held in the solid matrix is relatively small. Additionally, the sensor emits infrared radiation that melts snow away from its rods, similar to the way snow melts around the base of a tree.

    The CS616 and CS625 are not appropriate sensors for this application because of the lack of good contact between the rods and the snow, as well as the dynamic nature of the solid matrix.

  5. Yes. The rugged design of the CS616/CS625 protects the probe electronics from water under these conditions. Many CS616/CS625 reflectometers have been working reliably in very wet conditions for more than ten years.

  6. Fine roots do not significantly affect the CS616/CS625 reading.

  7. The CS616/CS625 can measure volumetric water content over the entire range from completely dry to saturation. A soil-specific calibration will improve accuracy, especially in very dry soil.

  8. Yes, as long as the data logger can detect a ±700 mV square wave over a frequency range of 29 to 67 kHz.

  9. If the new site has soil with a different soil type, a soil-specific calibration may be needed. For soil that is sandy or sandy loam with low bulk electrical conductivity, the calibration equation in the CS616 and CS625 instruction manual works well. 

  10. If a soil-specific calibration is performed, the CS616/CS625 may be used in soil with a maximum bulk electrical conductivity of 5 dS/m.